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1. In 1913 Edmund Landau proved an important inequality for
twice differentiable functions which nowadays would be written

111'112 < 411/11111" II, (1.1)

where the norm refers to the space qo, 00]. It is also true for other spaces.
In 1967 R. R. Kallman and G.-C. Rota [4] found the deeper reason for the
inequality and showed that it could easily be derived from the general
theory of contraction semigroups of linear transformations applied to the
shift operator. This leads to a wide generalization of the inequality.

The connection is the following. Let X be a B-space over the complex
numbers, {T(s)} a semigroup of linear transformations from X into itself
such that

lim T(s)x = x,
sW

Vx, and II T(s) II < 1, Vs > O. (1.2)

Let A be the infinitesimal generator of {T(s)}. Thus, for x in a linear sub­
space D(A), dense in X,

lim h! [T(h) - I]x = Ax.
hW

(1.3)

The domain of D2 is also dense in X and, for x E D(A2), Taylor's theorem
with remainder holds so that

T(s)x = x + :! Ax + (s - u) T(u) A 2x duo

From this relation, Kallman and Rota derived the inequality

2 1
II Ax II < sII x II + 2 s II A2X II·
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(1.4)

(1.5)
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If A2X = 0, it is seen that Ax = 0 and x is invariant under the operator T(s)
for all s > O. If A2X =F 0, it is seen that the right member of (1.5) becomes a
minimum for

the minimum value gives

(1.6)

and this is the Landau-Kallman-Rota inequality.
Landau's theorem is obtained if X is a function space, say qo, 00] or

Lp(O, 00), and T(s) is the shift operator defined by

for here

T(s)[f](t) = f(s + t),

A[f](t) = l'(t).

s ~ 0; (1.7)

(1.8)

2. The purpose of this note is to call attention to the inexhaustible
supply of contraction semigroups. The corresponding infinitesimal gener­
ators are normally (always ?) differential operators so that among the inequal­
ities (1.6) there is any number of direct generalizations of (1.1). Classical
examples are the Gauss-Weierstrass and the Poisson semigroups. In the
first case,

w(s)[f](t) = (l7S)-t rexp[-(t - U)2/S]j(U) du, (2.1)
00

with
A",[f](t) = HR(t)

and the inequality

In the Poisson case we have, instead,

s fooP(s)[f](t) = - [(t - U)2 + S2]-1 feu) du
17 00

with
Ap[f](t) = let).

(2.2)

(2.3)

(2.4)

(2.5)

Here the tilde denotes the conjugate harmonic function. We note that
A p 2 = 4A", so that the LKR inequality gives

III 112 :os:; 411/11111" II.

In both cases X may be taken as q - 00, 00] or Lp{- 00, 00), 1 ~ p ~ 00.
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A more profitable way of attacking the problem is to verify that certain
simple differential operators generate contraction semi-groups. The expres­
sions for A p and Aw suggest trying

A2k- 1[f](t) = (_I)k-lj(2k-1)(t),

A2k[fl(t) = (_l)"-1j(2k)(t).

(2.8)

(2.9)

If the necessary number of derivatives are in L p ( - co, co), 1 ~ p ~ 2, then
the Fourier transforms of the right members are

and (2.10)

respectively, where! is the Fourier transform off This leads to the factor
transformations

U2k_1(S)[!](t) = exp(it2k- 1s)!(t),

U2k(S)[!](t) = exp(-t2kS)!(t),

-co <s < co,

o~s.

(2.11)

(2.12)

The first is a group of isometries, the second a semigroup of contractions.
Passing from Fourier transforms to functions, we get corresponding groups
or semigroups of transformations Tn(s). Here TnCs)[f] is the Fourier trans­
form of Un(s)[/]. Furthermore, the infinitesimal generator of Tn(s) is the
corresponding operator An defined by (2.8) or (2.9). This leads to an infinite
set of LKR inequalities generalizing the original Landau inequality. For all
positive integers n,

Ilj(n) 112 :;;;; 41Ifllllj<2n)ll, (2.13)

where X = Li- co, co), 1 :;;;; p ~ 2. While a proof based on Fourier trans­
form theory does not apply for 2 < p or for C, the inequality would seem
to be true also for these spaces.

It is of course possible to replace the single derivatives in (2.8) and (2.9)
by suitably chosen differential polynomials with constant coefficients. Care
must be taken that in the analog of (2.10) the multiplier has nonpositive
real part. For such semigroups, see Hille-Phillips [2, pp. 574-580].

3. We can go much further and consider functions of several var­
iables and corresponding operators involving partial derivatives. For the
following, see Hille [1, pp. 400-408], not in Hille-Phillips [2]. We consider
the space L2(R"") and let u = (Ul , ... , um)' If m is odd, m = 2k - 1, we form
the scalar polynomial

10-1

A2k-1(U) = L (-1)1 P2i+l(U)
i-O

(3.1)
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where each Pa. is a homogeneous polynomial of degree ex with real coefficients.
For m even, m = 2k; set, instead,

k

A2iu) = L (-I)i+1 P2i(U).
i=O

(3.2)

Here, again, each Pa. is a homogeneous polynomial in U1 , ••• , Um of degree ex
with real coefficients. In addition, we demand that P2k be a positive definite
m-ic form and that

k

P .(u) = L P2j(u)
i=O

be nonnegative everywhere in Rm. We write

k-l

Po(u) = L P2i+1(U).
i=l

The differential operator is now

(3.3)

(3.4)

(3.5)

In the first case the Fourier transform of the result of applying the oper­
ator to lis

and in the second case

iPo(t)j(t),

-P.(t)!(t).

(3.6)

(3.7)

Here!is the Fourier transform off The formulas are valid on that subspace
of L 2(Rm) where the elements possess partial derivatives of the required
orders and the partials belong to the space.

We have now corresponding factor semigroups on L 2(Rm), namely,

U2k- 1(S)[!](t) = exp[iPo(t)s]!(t),

U2k(S)[!](t) = exp[-p.(t)s]!(t),

(3.8)

(3.9)

respectively. The first transformation actually defines a group of isometries,
- 00 < s < 00, on the space into itself. The second set of transformations
are contractions for 0 ~ s. Passing now from Fourier transforms to func­
tions we get a set of transformations {Tm(s)}. Here the Fourier transform of
TmCs)[f] equals Um(s)[!]. Further, {TmCs)} is, for fixed m, a contraction
semigroup (group if m is odd) and its infinitesimal generator is given by (3.5).
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This leads to another family of LKR inequalities
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(3.10)

4· We desist from further special cases but raise the question whether
4 is the best constant in all these inequalities. If we consider the class of all
LKR inequalities (1.6), then this is certainly the case. This follows from the
fact that 4 is needed in (1.1) for a special choice of X. But for other spaces
a smaller value will do, already in the Landau case.

Now it is clear that in (2.13) we cannot replace the value 4 by anything
smaller than 1 if the space under consideration contains e-t as an element
for which we have equality when 4 is replaced by 1. For the case n = 2 we
can replace 4 by 4/3. This was observed by Kurepa [5] who got the result
from his theory of cosine transforms. An elementary proof can be based
on the identity

12[f(t + s) + f(t - s)]

= f(t) + ~ S2 f"(t) + i! f: (s - U)3 ~ [j<4l(U + t) + j<4)(-u + t)] du (4.1)

valid for functions t --+- f(t) which together with their four first derivatives
belong to the space for all t, - 00 < t < 00. This gives the inequality

(4.2)

If II f(4) II =1= 0 we can minimize the right member and obtain Kurepa's
inequality

II f" 11 2 <; ~ II!IIII f(4) II. (4.3)

This suggests that 4 can be replaced by a smaller number in (2.13) also for
n > 2. The number should depend on n but what numbers are admissible
is an open question.
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